经典动态规划:完全背包问题

读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:

LeetCode 力扣 难度
518. Coin Change II 518. 零钱兑换 II 🟠

———–

零钱兑换 2 是另一种典型背包问题的变体,我们前文已经讲了 经典动态规划:0-1 背包问题背包问题变体:相等子集分割

读本文之前,希望你已经看过前两篇文章,看过了动态规划和背包问题的套路,这篇继续按照背包问题的套路,列举一个背包问题的变形。

本文聊的是力扣第 518 题「 零钱兑换 II」,我描述一下题目:

给定不同面额的硬币 coins 和一个总金额 amount,写一个函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个

我们要完成的函数的签名如下:

int change(int amount, int[] coins);
// 注意:cpp 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

int change(int amount, vector<int>& coins);
# 注意:python 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
# 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

def change(amount: int, coins: List[int]) -> int:
// 注意:go 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

func change(amount int, coins []int) int
// 注意:javascript 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

var change = function(amount, coins) {

};

比如说输入 amount = 5, coins = [1,2,5],算法应该返回 4,因为有如下 4 种方式可以凑出目标金额:

5=5

5=2+2+1

5=2+1+1+1

5=1+1+1+1+1

如果输入的 amount = 5, coins = [3],算法应该返回 0,因为用面额为 3 的硬币无法凑出总金额 5。

至于零钱兑换 I,在我们前文 动态规划套路详解 写过。

我们可以把这个问题转化为背包问题的描述形式

有一个背包,最大容量为 amount,有一系列物品 coins,每个物品的重量为 coins[i]每个物品的数量无限。请问有多少种方法,能够把背包恰好装满?

这个问题和我们前面讲过的两个背包问题,有一个最大的区别就是,每个物品的数量是无限的,这也就是传说中的「完全背包问题」,没啥高大上的,无非就是状态转移方程有一点变化而已。

下面就以背包问题的描述形式,继续按照流程来分析。

解题思路

第一步要明确两点,「状态」和「选择」

状态有两个,就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」嘛,背包问题的套路都是这样。

明白了状态和选择,动态规划问题基本上就解决了,只要往这个框架套就完事儿了:

for 状态1 in 状态1的所有取值
    for 状态2 in 状态2的所有取值
        for ...
            dp[状态1][状态2][...] = 计算(选择1选择2...)

第二步要明确 dp 数组的定义

首先看看刚才找到的「状态」,有两个,也就是说我们需要一个二维 dp 数组。

dp[i][j] 的定义如下:

若只使用前 i 个物品(可以重复使用),当背包容量为 j 时,有 dp[i][j] 种方法可以装满背包。

换句话说,翻译回我们题目的意思就是:

若只使用 coins 中的前 i 个(i 从 1 开始计数)硬币的面值,若想凑出金额 j,有 dp[i][j] 种凑法

经过以上的定义,可以得到:

base case 为 dp[0][..] = 0, dp[..][0] = 1i = 0 代表不使用任何硬币面值,这种情况下显然无法凑出任何金额;j = 0 代表需要凑出的目标金额为 0,那么什么都不做就是唯一的一种凑法。

我们最终想得到的答案就是 dp[N][amount],其中 Ncoins 数组的大小。

大致的伪码思路如下:

int dp[N+1][amount+1]
dp[0][..] = 0
dp[..][0] = 1

for i in [1..N]:
    for j in [1..amount]:
        把物品 i 装进背包,
        不把物品 i 装进背包
return dp[N][amount]

第三步,根据「选择」,思考状态转移的逻辑

注意,我们这个问题的特殊点在于物品的数量是无限的,所以这里和之前写的 0-1 背包问题 文章有所不同。

如果你不把这第 i 个物品装入背包,也就是说你不使用 coins[i-1] 这个面值的硬币,那么凑出面额 j 的方法数 dp[i][j] 应该等于 dp[i-1][j],继承之前的结果。

如果你把这第 i 个物品装入了背包,也就是说你使用 coins[i-1] 这个面值的硬币,那么 dp[i][j] 应该等于 dp[i][j-coins[i-1]]

由于定义中的 i 是从 1 开始计数的,所以 coins 的索引是 i-1 时表示第 i 个硬币的面值。

dp[i][j-coins[i-1]] 也不难理解,如果你决定使用这个面值的硬币,那么就应该关注如何凑出金额 j - coins[i-1]

比如说,你想用面值为 2 的硬币凑出金额 5,那么如果你知道了凑出金额 3 的方法,再加上一枚面额为 2 的硬币,不就可以凑出 5 了嘛。

综上就是两种选择,而我们想求的 dp[i][j] 是「共有多少种凑法」,所以 dp[i][j] 的值应该是以上两种选择的结果之和

for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= amount; j++) {
        if (j - coins[i-1] >= 0)
            dp[i][j] = dp[i - 1][j] 
                     + dp[i][j-coins[i-1]];
return dp[N][W]

有的读者在这里可能会有疑问,不是说可以重复使用硬币吗?那么如果我确定「使用第 i 个面值的硬币」,我怎么确定这个面值的硬币被使用了多少枚?简单的一个 dp[i][j-coins[i-1]] 可以包含重复使用第 i 个硬币的情况吗?

对于这个问题,建议你再仔回头细阅读一下我们对 dp 数组的定义,然后把这个定义代入 dp[i][j-coins[i-1]] 看看:

若只使用前 i 个物品(可以重复使用),当背包容量为 j-coins[i-1] 时,有 dp[i][j-coins[i-1]] 种方法可以装满背包。

看到了吗,dp[i][j-coins[i-1]] 也是允许你使用第 i 个硬币的,所以说已经包含了重复使用硬币的情况,你一百个放心。

最后一步,把伪码翻译成代码,处理一些边界情况

我用 Java 写的代码,把上面的思路完全翻译了一遍,并且处理了一些边界问题:

int change(int amount, int[] coins) {
    int n = coins.length;
    int[][] dp = int[n + 1][amount + 1];
    // base case
    for (int i = 0; i <= n; i++) 
        dp[i][0] = 1;

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= amount; j++)
            if (j - coins[i-1] >= 0)
                dp[i][j] = dp[i - 1][j] 
                         + dp[i][j - coins[i-1]];
            else 
                dp[i][j] = dp[i - 1][j];
    }
    return dp[n][amount];
}
// 注意:cpp 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

int change(int amount, vector<int>& coins) {
    int n = coins.size();
    int dp[n + 1][amount + 1];
    // base case
    for (int i = 0; i <= n; i++) 
        dp[i][0] = 1;

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= amount; j++)
            if (j - coins[i-1] >= 0)
                dp[i][j] = dp[i - 1][j] 
                         + dp[i][j - coins[i-1]];
            else 
                dp[i][j] = dp[i - 1][j];
    }
    return dp[n][amount];
}
# 注意:python 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
# 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

def change(amount: int, coins: List[int]) -> int:
    n = len(coins)
    dp = [[0] * (amount + 1) for _ in range(n + 1)]

    # base case
    for i in range(n + 1):
        dp[i][0] = 1

    for i in range(1, n + 1):
        for j in range(1, amount + 1):
            if j - coins[i-1] >= 0:
                dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i-1]]
            else:
                dp[i][j] = dp[i - 1][j]

    return dp[n][amount]
// 注意:go 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

func change(amount int, coins []int) int {
    n := len(coins)
    dp := make([][]int, n+1)
    for i := 0; i <= n; i++ {
        dp[i] = make([]int, amount+1)
        dp[i][0] = 1
    }

    for i := 1; i <= n; i++ {
        for j := 1; j <= amount; j++ {
            if j - coins[i-1] >= 0 {
                dp[i][j] = dp[i-1][j] + dp[i][j-coins[i-1]]
            } else {
                dp[i][j] = dp[i-1][j]
            }
        }
    }
    return dp[n][amount]
}
// 注意:javascript 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

var change = function(amount, coins) {
    var n = coins.length;
    var dp = new Array(n+1);
    for(var i=0; i<=n; i++){
        dp[i] = new Array(amount+1);
        dp[i][0] = 1; // base case
    }

    for (var i = 1; i <= n; i++) {
        for (var j = 1; j <= amount; j++)
            if (j - coins[i-1] >= 0)
                dp[i][j] = dp[i - 1][j] 
                         + dp[i][j - coins[i-1]];
            else 
                dp[i][j] = dp[i - 1][j];
    }
    return dp[n][amount];
};

而且,我们通过观察可以发现,dp 数组的转移只和 dp[i][..]dp[i-1][..] 有关,所以可以使用前文讲的 动态规划空间压缩技巧,进一步降低算法的空间复杂度:

int change(int amount, int[] coins) {
    int n = coins.length;
    int[] dp = new int[amount + 1];
    dp[0] = 1; // base case
    for (int i = 0; i < n; i++)
        for (int j = 1; j <= amount; j++)
            if (j - coins[i] >= 0)
                dp[j] = dp[j] + dp[j-coins[i]];
    
    return dp[amount];
}
// 注意:cpp 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

int change(int amount, vector<int>& coins) {
    int n = coins.size();
    vector<int> dp(amount + 1);
    dp[0] = 1; // base case
    for (int i = 0; i < n; i++)
        for (int j = 1; j <= amount; j++)
            if (j - coins[i] >= 0)
                dp[j] = dp[j] + dp[j-coins[i]];
    
    return dp[amount];
}
# 注意:python 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
# 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

def change(amount: int, coins: List[int]) -> int:
    n = len(coins)
    dp = [0] * (amount + 1)
    dp[0] = 1 # base case
    for i in range(n):
        for j in range(1, amount + 1):
            if j - coins[i] >= 0:
                dp[j] = dp[j] + dp[j - coins[i]]
                
    return dp[amount]
// 注意:go 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

func change(amount int, coins []int) int {
    n := len(coins)
    dp := make([]int, amount+1)
    dp[0] = 1 // base case
    for i := 0; i < n; i++ {
        for j := 1; j <= amount; j++ {
            if j-coins[i] >= 0 {
                dp[j] = dp[j] + dp[j-coins[i]]
            }
        }
    }
    return dp[amount]
}
// 注意:javascript 代码由 chatGPT🤖 根据我的 java 代码翻译,旨在帮助不同背景的读者理解算法逻辑。
// 本代码还未经过力扣测试,仅供参考,如有疑惑,可以参照我写的 java 代码对比查看。

var change = function(amount, coins) {
    var n = coins.length;
    var dp = new Array(amount + 1).fill(0);
    dp[0] = 1; // base case
    for (var i = 0; i < n; i++) {
        for (var j = 1; j <= amount; j++) {
            if (j - coins[i] >= 0) {
                dp[j] = dp[j] + dp[j-coins[i]];
            }
        }
    }
    return dp[amount];
};

这个解法和之前的思路完全相同,将二维 dp 数组压缩为一维,时间复杂度 O(N*amount),空间复杂度 O(amount)。

至此,这道零钱兑换问题也通过背包问题的框架解决了。

接下来可阅读:


引用本文的文章

_____________

《labuladong 的算法小抄》已经出版,关注公众号查看详情;后台回复关键词「进群」可加入算法群;回复「全家桶」可下载配套 PDF 和刷题全家桶

共同维护高质量学习环境,评论礼仪见这里,违者直接拉黑不解释